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In the past decades, advances in the use of adoptive cellular therapy to treat

cancer have led to unprecedented responses in patients with relapsed/refractory

or late-stage malignancies. However, cellular exhaustion and senescence limit

the efficacy of FDA-approved T-cell therapies in patients with hematologic

malignancies and the widespread application of this approach in treating

patients with solid tumors. Investigators are addressing the current obstacles

by focusing on the manufacturing process of effector T cells, including

engineering approaches and ex vivo expansion strategies to regulate T-cell

differentiation. Here we reviewed the current small-molecule strategies to

enhance T-cell expansion, persistence, and functionality during ex vivo

manufacturing. We further discussed the synergistic benefits of the dual-

targeting approaches and proposed novel vasoactive intestinal peptide

receptor antagonists (VIPR-ANT) peptides as emerging candidates to enhance

cell-based immunotherapy.

KEYWORDS

adoptive cell therapy (ACT), chimeric antigen receptors (CAR), ex vivo manufacturing,
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Abbreviations: ACT, adoptive T-cell therapy; GvL, graft-versus-leukemia; GVHD, graft-versus-host disease;

HSCT, hematopoietic stem cell transplantation; CAR, chimeric antigen receptor; TCR, T cell receptor; BCR, B

cell receptor; TIL, tumor-infiltrating lymphocyte; CRS, cytokine release syndrome; VIP, vasoactive intestinal

peptide; VIPR-ANT, vasoactive intestinal peptide receptor antagonist; R/R, relapsed/refractory; ALL, acute

lymphocytic leukemia; AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; DLBCL, diffuse

large B-cell lymphoma; NHL, non-Hodgkin’s lymphoma; PDAC, pancreatic ductal adenocarcinoma; TNBC,

triple negative breast cancer; HNSCC, head and neck squamous cell carcinoma; MM, multiple myeloma;

GBM, glioblastoma; MRD, minimal residual disease; PFS, progression-free survival; PDX, patient-derived

xenograft; TMV, tumor membrane vesicle.
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Introduction

Adoptive T-cell therapy (ACT) is a form of cellular

immunotherapy in which tumor-reactive T cells recognize and

eliminate malignant cells after infusion into patients. Barnes and

Loutit initially proposed the ACT concept in 1956, describing the

graft-versus-leukemia (GvL) effect of allogeneic hematopoietic stem

cell transplantation (HSCT), which represents the earliest clinical

example of the adoptive transfer of T cells with anti-cancer activity

(1). In the past few decades, cell-based therapies with chimeric

antigen receptor (CAR) T cells, engineered T cell receptor (eTCR) T

cells, tumor-infiltrating lymphocytes (TILs), and other antigen-

specific T cells have rapidly developed and shown enormous

clinical potential. CAR T cell therapy, which involves the transfer

of allogeneic or autologous T cells modified to express a chimeric

antigen receptor (CAR), has gained FDA approval with studies

documenting durable remissions in patients with relapsed/

refractory (R/R) hematologic malignancies (2–4). However, many

patients fail to achieve long-lasting remission due to loss of CAR T

cell persistence and functionality (5). Hence, developing methods to

counteract T-cell exhaustion and improve functionality is essential

to improving ACT efficacy.

T cell exhaustion is a homeostatic mechanism that protects the

organism against severe immunopathology from overwhelming

CD8 T cell responses (6). Generally, exhausted T (Tex) cells have

decreased expression of effector cytokines and increased expression

of inhibitory immune checkpoint receptors such as PD-1, TIM-3,

LAG-3, TIGHT, and CTLA-4 (7). However, expression of these

molecules is also upregulated during early T cell activation,

presumably as a homeostatic mechanism that modulates

activation downstream of co-stimulatory signaling (8). T cell

exhaustion comprises a differentiative process of several stages,

accompanied by significant epigenetic reorganization and distinct

transcriptional signatures (9, 10). Namely, the expression of TCF1/

7, a transcription factor critical to maintaining immunological

memory, decreases during the transition from the plastic to the

irreversible and fixed dysfunctional chromatin state (11, 12).

Manufacturing of modified T cells is a multi-step process (13).

The focus of two main areas of optimizing T-cell therapies are

designing optimal genetic modifications of T cells and engineering

improved cell activation and culture processes during ex vivo T-cell

expansion (14). Adding clinically approved compounds, such as

monoclonal antibodies and small molecule inhibitors, during the

manufacture of cellular products might be a promising strategy to

overcome T-cell exhaustion and enhance T-cell cytotoxicity.

Adding drugs ex vivo represents an alternative to in vivo

administration as part of a preconditioning regimen or therapy

concomitant with T-cell infusion. Preclinical testing of ex vivo

manufacturing and expansion approaches can identify strategies

that yield a more potent adoptive T-cell therapy product with

superior anti-tumor activity and persistence after infusion.

Cultures media supplemented with gamma-chain cytokines

during ex vivo manufacturing, including IL-2, IL-7, IL-15, and IL-

21, leads to the expansion of CAR T cells with enhanced

proliferation, metabolic profiles, and less terminal differentiation
Frontiers in Immunology 02
(15). More recently, adding small-molecule compounds targeting

tumor cell metabolic signaling pathways has also been explored to

enhance T-cell function and persistence. (Table 1).
Enhance therapy T-cell ex vivo with
existing small-molecule drugs

Protein kinase inhibitors

PI3K-AKT-mTOR pathway inhibitors
The most frequent aberrations in cell signaling associated with

tumorigenesis, angiogenesis, cell growth, or metastasis are

hyperactive PI3K-AKT-mTOR pathways, exemplified by

activating mutations of PIK3CA and the loss of PTEN

functionality (54). Hence, the pharmaceutical industry has

dedicated significant effort to developing PI3K inhibitors (PI3Ki)

as targeted therapies. Mutational activation of PI3K signaling is

relatively rare in hematologic malignancies, yet PI3Kd inhibitors

(idelalisib, duvelisib) were approved as a therapy for B-cell

malignancies. Aside from suppressing tumor cell growth directly

via inhibiting intracellular PI3K signaling (55), the beneficial

clinical effects of PI3K inhibition in this setting may also be to

indirectly activate immune cells with anti-cancer cytotoxicity in the

tumor microenvironment. PI3Kg and PI3Kd are selectively

expressed in leukocytes and are essential in promoting glycolysis

and differentiation (56, 57). Indeed, while PI3K inhibitors may

dampen many immune cell functions, blocking regulatory T (Treg)

cell-mediated suppression of anti-tumor immune responses shows

promise in immunotherapy (58). Initially, pan-PI3K inhibitor

Pictilisib (GDC-0941) and PI3Ka/d/b inhibitor LY294002 were

found to delay terminal differentiation and preserve a reservoir of

memory T cells (TCM and TEM) (16, 17). Selective inhibition of

PI3Kd with idelalisib (CAL-101), but not PI3Ka or PI3Kb,
promoted the generation of naïve-like (CD45RA+CCR7+) and

undifferentiated CD8+ T cells phenotypes (CCR7+CD62L+,

CD127, Tcf7) that had enhanced proliferative potential, function,

and survival (16, 18). Idelalisib also preferentially inhibits human

regulatory T-cell function (59). Subsequent studies showed

idelalisib-treated T cells, or CAR T cells persisted longer and

engrafted better after adoptive transfer into tumor-bearing mice,

resulting in improved anti-tumor immunity (18, 19). These cells

expressed fewer exhaustion markers (i.e., lower PD1 expression

levels) and had a less senescent phenotype (CD27-CD28-) (21, 60).

PI3Kg, first promoted as a selective immunotherapeutic target in

myeloid cells, was later found to be involved in remodeling T-cell

differentiation (22, 61, 62). Inhibition of PI3Kg and PI3Kd with

duvelisib (IPI-145) reprogramed terminal differentiation and the

metabolism of CAR T cells to enhance expansion, persistence, and

anti-tumor cytotoxicity (20). A recent phase 1 study

(NCT03274219) of bb21217, an anti-BCMA CART therapy based

on ide-cel that included the PI3K inhibitor bb007 during ex vivo

culture showed increased enrichment for CD27+/CCR7+ Tm cells,

depletion of CD57+ senescent cells, increased CD127 expression,

and higher peak in vivo CAR T expansion, resulting in improved
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TABLE 1 Summary of small-molecule drugs enhancing adoptive T cells ex vivo.

Compound Names Target T Cell Product Tumor Model CRS

Protein Kinase Inhibitors

GDC-0941 Pictilisib pan-PI3K gp100-TCR (16) Melanoma

LY294002 PI3K a/d/b CD33-CAR (17) AML

CAL-101 Idelalisib PI3K d gp100-TCR (18)
CD19-CAR (19, 20)
CD5-CAR (21)
Meso-CAR (22)

Melanoma
CLL
DLBCL
Melanoma

IPI-145 Duvelisib PI3K d/g gp100-TCR (22)
Meso-CAR (22)
CD19-CAR (20)

Melanoma
CLL

Lower (23)

IPI-549 Eganelisib PI3K g gp100-TCR (22)
Meso-CAR (22)

Melanoma

TGR-1202 Umbralisib PI3K d gp100-TCR (22)
Meso-CAR (22)

Melanoma

bb007 PI3K BCMA-CAR (24) MM

Rapamycin Sirolimus mTORC1 EpCAM-CAR (25) AML

Akt inhibitor VIII Akt TIL (26)
gp100-TCR (26)
CD19-CAR (27, 28)
MiHA-specific (29)

Melanoma
Melanoma
ALL

GDC-0068 Ipatasertib Akt MiHA-specific (29)

MK2206 Akt EpCAM-CAR (30) Colon Cancer

Ibrutinib BTK CD19-CAR (31–36) CLL, NHL, ALL Lower (33)

Acalanrutinib BTK CD19-CAR (36) ALL

Zanubritinib BTK CD19-CAR (37) B-malignancy

Dasatinib TK CD19-CAR (38) ALL

Epigenetic modulators

Decitabine DNMT CD19-CAR (39)
CD20-CAR (39)
NY-ESO-1-TCR (40)

ALL
ALL
AML

Panobinostat HDAC Her2-CAR (41)
gp100-TCR (41)

PDAC
PDAC

SAHA HDAC B7-H3-CAR (42) TNBC, HNSCC

Sulforaphane HDAC Meso-CAR (43) Lung Cancer

JQ1 BRD4 CD19-CAR (44, 45)
HLA-A2/MART127-35-TCR (44)

ALL
Melanoma

Immunomodulators

Lenalidomide Myeloma-specific (46)
CS1-CAR (47)
BCMA-CAR (48)
CD23-CAR (49)
WT1-CAR (50)
CD133-CAR (51)
HER2-CAR (51)
EGFRvIII-CAR (52)
CD19-CAR (53)

MM
MM
MM
CLL
Wilms Tumor
Glioma
Breast Cancer
GBM
DLBCL

Peptide-based modulators

(Continued)
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clinical outcomes in MM patients (24, 63). Excitingly, duvelisib also

potently inhibits IL-6 production and cytokine release syndrome

(CRS) (23). Two clinical trials were initiated to verify enhanced

CAR T-cell functionality (NCT04890236, diffuse large B-cell

lymphoma (DLBCL)) and CRS prevention (NCT05044039, non-

Hodgkin lymphoma (NHL), acute lymphocytic leukemia (ALL)) in

Duvelisib-treated DLBCL patients.

Inhibiting the pathway downstream of PI3K showed a similar

effect as direct inhibition of PI3K. mTOR acts intrinsically through

the mTORC1 (mTOR complex 1) pathway to regulate memory T-

cell differentiation (64). The mTORC1 inhibitor rapamycin

promoted memory CD8 T-cell survival, maintenance of a less

differentiated phenotype, and improved the functional qualities of

CD8 T cells (CD127High CD62LHigh Bcl2High KLRG1Low) (64).

Furthermore, rapamycin-pretreated EpCAM CAR T cells had

upregulated CXCR4, increased infiltration into the bone marrow,

and superior elimination of AML cells in leukemia xenograft mouse

models (25). Interestingly, CAR-T cell expansion in IL-15 preserved

the stem cell memory (Tscm) phenotype and improved metabolic

fitness, likely via mTORC1 suppression. However, the inclusion of

IL-7 and/or IL-21 in addition to IL15 reduced the beneficial effects

of IL-15 on the phenotype and anti-tumor potency of CAR-T (65).

Akt functions as a critical signaling node to maintain T cell survival

during the effector-to-memory cell transition (66). Like rapamycin,

Akt inhibitors, notably Akt-inhibitor VIII and GDC-0068,

enhanced the expansion of tumor-specific lymphocytes and

promoted the ex vivo generation of stem cell memory-like CD8+

T cells (CD62Lhigh CCR7high CXCR4high) with a unique metabolic

profile and cytokine polyfunctionality (26–29). A pre-clinical study

utilizing EpCAM CAR T in a T murine AML model showed that

Akt inhibition (MK2206) at the initial stage of CAR T manufacture

enhanced the expansion of CAR T cells and CART efficacy in vivo

(30). Overall, targeting PI3K-AKT-mTOR signaling shows

therapeutic potential in improving adoptive T-cell therapy. PI3K

inhibition produces a more profound TCF1/7 upregulation than

other small molecular TK inhibitors and may elucidate better anti-

tumor efficacy in vivo (18).

BTK inhibitors (BTKi)
Bruton’s tyrosine kinase (BTK) is a nonreceptor tyrosine kinase

initially discovered as a critical component of B cell receptor (BCR)

signal transduction in both healthy and malignant B lymphocytes (67,

68). The clinical role of BTK extends beyond its effects on normal and

malignant B cells. PI3Kg can activate BTK to promote phospholipase C

(PLC) g-dependent signaling in hematopoietic cells, including myeloid

cells (69). A recent study suggested a regulatory role for BTK in T-cell

activation. After TCR engagement, BTK was activated and
Frontiers in Immunology 04
subsequently activated PLCg1, which amplified downstream TCR

signaling and facilitated T-cell activation and expansion (70).

Clinically, long-term treatment with ibrutinib, an inhibitor that

forms irreversible covalent bonds to BTK, reversed CD8 T cell

exhaustion and protected T cells from proliferation-induced

senescence in chronic lymphocytic leukemia (B-CLL) patients. In

addition, T cells from ibrutinib-treated CLL patients have decreased

PD-1, TIM3, and LAG3 expression and increased antigen-specific

responses (71–73). Ibrutinib improved CAR T cell expansion in vitro

and promoted a less-differentiated less-exhausted naïve-like phenotype

by inhibiting interleukin-2-inducible T-cell kinase (ITK) (31, 32). To

date, several clinical trials are investigating the regimen of concurrent

administration of CAR T cells and ibrutinib in B-cell malignancies

(NCT02640209, NCT03960840). Concurrent ibrutinib therapy may

improve CD19 CAR T-cell engraftment, enhance anti-tumor efficacy,

and decrease CRS severity, leading to high rates of minimal residual

disease (MRD)-negative responses, but progression-free survival (PFS)

was unchanged (32–35). Second-generation BTKi acalanrutinib and

zanubritinib, which are more selective and well-tolerated, have also

been examined (74). Acalabrutinib improved CAR T-cell effector

function and prolonged survival of tumor-bearing mice when

combined with CAR T cells (36), while zanubrutinib lacked these

positive effects (37).

Tyrosine kinase inhibitors (TKI)
Dasatinib, a second-generation tyrosine kinase inhibitor (TKI),

was initially approved by FDA to treat Ph+ chronic myeloid

leukemia (CML) (75). A recent study showed that dasatinib

prevents or reverses CD28/CAR T and 4-1BB/CA T cell

differentiation and exhaustion during ex vivo expansion, resulting

in profoundly enhanced therapeutic efficacy and in vivo persistence

(38). Multiple pathways are involved in this process, including Src

phosphorylation, JAK/STAT, MAPK, and PI3K/AKT (38, 76).
Epigenetic modulators

Epigenetic modulators represent another promising strategy to

enhance T-cell function based on the epigenetic remodeling and

chromatin transitions discovered during the process of T-cell

exhaustion. DNA methyltransferases and histone deacetylases

(HDACs) are activated during T-cell differentiation, resulting in high

levels of DNA and histone methylation in exhausted T cells (7, 9).

Recent studies revealed that decitabine, a clinical DNA methylation

inhibitor, enhances anti-tumor activities, cytokine production, and

CAR T cell proliferation in both in vitro and in vivo non-Hodgkin

lymphoma (NHL) models (39). Decitabine also promotes the
TABLE 1 Continued

Compound Names Target T Cell Product Tumor Model CRS

VIPhyb VPAC1/2 CD5 (21)
TMV-cultured

DLBCL
Colon Cancer

ANT308 VPAC1/2 T cells
fro
AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; NHL, non-Hodgkin’s lymphoma; PDAC, pancreatic ductal adenocarcinoma; TNBC,
triple negative breast cancer; HNSCC, head and neck squamous cell carcinoma; MM, multiple myeloma; GBM, glioblastoma.
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maintenance of effector function and the memory phenotype of NY-

ESO-1-specific eTCR T cells leading to greater anti-AML efficacy (40).

Likewise, HDAC inhibitors panobinostat, SAHA, and sulforaphane

promote the generation of T cells with a central memory phenotype

and reduce expression of immunosuppressive markers (PD-1, CTLA-

4, TET2) in CAR T-cell, resulting in enhanced anti-tumor response in

solid tumor models (41–43).

BRD4 is a member epigenetic modulator of the bromodomain

and extra terminal motif (BET) subfamily. BRD4 promotes TEM

CD8 T-cell differentiation by regulating BATF expression.

Treatment of CAR T cells with BET inhibitor JQ1 promoted the

expansion of less differentiated TSCM and TCM, downregulated PD-1

and TET2 exhaustion marker expression, improved persistence and

effector function, and augmented T-cell mediated anti-tumor effect

in leukemia models (44, 45). Interestingly, the commonly used PI3K

inhibitor LY294002 is also an inhibitor of BET bromodomains (77).
Immune modulators

Immunomodulatory imide drugs (IMiDs) are thalidomide analogs

with pleiotropic anti-myeloma properties. IMiDs act directly on

malignant cells and indirectly via enhancing T and NK cell effector

functions (78). Early in vitro studies showed that IMiDs induced T-cell

proliferation, IL-2 and IFN-g secretion, and myeloma-specific T-cell

responses (46, 79). Myeloma patients treated with lenalidomide had

increased numbers of central (TCM) and effector (TEM) memory CD8 T

cells with decreased PD-1 expression (80). However, the effect of IMiDs

on Treg remains uncertain (81). In general, favorable clinical outcomes

with lenalidomide were observed from either induction or post-

autologous stem cell transplant (ASCT) consolidation and

maintenance (81). Aligned with previous findings, lenalidomide-

treated CAR T cells acquired a memory phenotype, enhanced

polyfunctional cytokine secretion, and increased immune synapse

formation (47). CS1 CAR T cells expanded in vitro with

lenalidomide had improved anti-tumor efficacy and in vivo

persistence in murine myeloma models (47). Preclinical studies

showed treatment with lenalidomide during the early phase of in

vivo CAR T cell expansion recapitulated the effects of ex vivo

lenalidomide exposure in multiple hematologic and solid tumor

mouse models (48–52). As expected, several clinical trials

investigating the combination of CAR T cells with lenalidomide have

been initiated (NCT03070327, NCT05032820, NCT04923893,

NCT04002401). Preliminary data has shown that early lenalidomide

infusion enhances CAR T-cell response in patients with R/R DLBCL

(53, 82).
Implications of emerging peptide-
based antagonists in ACT

VIP-receptor antagonists (VIPR-ANT)

Vasoactive intestinal peptide (VIP) is a 28-amino acid

neuropeptide isolated in 1970 from porcine duodenum that
Frontiers in Immunology 05
induces vasodi la t ion and hypotens ion (83 , 84) . The

immunosuppressive properties of VIP were described in the

early 2000s by Delgado, who noted that VIP promoted the

survival of Th2 effectors, the generation of memory Th2 cells,

and enhanced Treg function (85–87). More recent studies

showed that VIP enhances M2 macrophage polarization and

promotes macrophages with a less-inflammatory physiologic

profile that promotes tissue repair (88–90). We recently noted

that VIP produced by activated T cells limits their proliferation

in vitro (91), and VIP produced by donor plasmacytoid

dendritic cells (pDCs) limits Graft-versus-Host Disease

(GVHD) in vivo (92). The emerging immunoregulatory role of

VIP on innate and adaptive immune functions makes it a

candidate immunotherapy target.

VIP-hybrid (VIPhyb) is a VIP-receptor antagonist synthesized

by replacing the six N-terminal residues of VIP with highly charged

residues from the N-terminal peptide sequence of neurotensin (93).

VIPhyb acts as a competitive antagonist, binding to VIP receptors

VPAC1 and VPAC2 without activating the downstream VIP-

receptor signaling pathway (94). In the past decade, our group

showed that inhibiting VIP signaling could enhance CD8 T-cell

proliferation and function, leading to favorable T-cell-dependent

anti-viral and anti-cancer responses in murine models of CMV

infection and acute leukemia, respectively (91, 95–98). To further

improve the efficacy of VIP-receptor antagonists as immuno-

modulatory drugs, we have developed a series of peptides,

including ANT008, ANT308, and ANT195, that are predicted to

have increased binding affinity to human VIP receptors VPAC1 and

VPAC2 and have enhanced ability to elicit T cell-dependent

antileukemia responses in mice (Li unpublished). Recently, we

published that VIP-receptor antagonists (ANT008, ANT308) were

synergistic when added to anti-PD1 antibodies in enhancing T-cell

mediated anti-tumor response to multiple murine models of

pancreatic ductal carcinoma (PDAC) (99). These exciting findings

validated using VIP-receptor antagonists as anti-cancer

immunotherapy agents. In addition, we further investigated the

feasibility of using VIP-receptor antagonists in adoptive T-

cell therapy.
Synergy with PI3Ki to enhance T cell
persistence and functionality

Idelalisib and VIPhyb
Previously, our team has shown that idelalisib and VIPhyb

synergically increased the transduction and expansion of anti-CD5

CAR T cells manufactured from DLBCL patients (21). The addition

of idelalisib and VIPhyb to cultured T cells reduced terminal

differentiation, enhanced cytokine expression, and preserved

expression of costimulatory molecules CD27 and CD28 (21).

These agents target distinct signaling pathways, and their

combinatorial synergy might be applicable for manufacturing

CAR T therapy in patients with hematological and in adoptive T

cell for patients with solid tumor malignancies. However, applying

adoptive T cell therapy to solid tumor patients is constrained by the
frontiersin.org
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low frequency of tumor-infiltrating lymphocytes and the high

molecular heterogeneity of solid tumors lacking expression of

public (shared) tumor antigens. Therefore, we tested the

feasibility of expanding patient tumor-specific T cells ex vivo by

adding idelalisib and VIPhyb, using matched tumor and PBMCs
Frontiers in Immunology 06
from consented metastatic colon cancer patients. The source of

tumor antigens were tumor membrane vesicles (TMVs)

manufactured from that patient’s tumor and decorated with IL-12

and B7-1 (100, 101). Activating TMV-stimulated autologous T cells

in the presence of idelalisib, VIPhyb, and anti-CD3 Dyna beads
B

C D

A

FIGURE 1

Pharmacological blockade of PI3K and VIPR signaling improves T-cell expansion and function in vivo ((A) adoptive antigen-specific T cells in
metastatic colon cancer PDX model) and in vitro ((B–D), human T cells). (A) Left: Increased IFN-g secreting CD8+ T cells using decorated TMV with
VIPhyb and idelalisib (CRCLM-02, n=1); Right: Decreased tumor growth in PDX (CRCLM-02 and CRCLM-04) mice receiving T cells expanded with
beads+TMV+drugs. ANOVA was used to determine significance. The standard error (SE) was shown. (B) Total CD3+ T cells, the actively proliferating
Ki67+CD3+ subset, CD4+CD3+ T cells, and CD8+CD3+ T cells are synergistically expanded in vitro by the combination of ANT308 and duvelisib.
The mean +/- SD fold increase in cell expansion over control cultures containing neither added ANT308 nor duvelisib is shown (n=4), with color
shading according to the relative increase. The pair of concentrations yielded the maximal increase in mean fold expansion is shown with a yellow
border around the cell. (C) Frequencies of CD27+CD28+ T cells in cultures with duvelisib and ANT308 led to the highest average expansion for that
subset of T cells (n=4). An example of gating is on the left. (D) ANT308 and duvelisib demonstrated synergy in decreasing PD1+, Lag3+, Tim3+, and
PD1+Lag3+Tim3+ cells (n=4). Figures were plotted with Microsoft Excel and Prism 9. Paired two-sided student t-test was used to determine
significance. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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expanded cancer-specific T cells (Figure S1). After 14 days of ex vivo

culture, T cells expanded with decorated TMV, VIPhyb, and

idelalisib had 25% of IFN gamma-expressing CD8 T cells

compared to 13% IFN gamma-expressing CD8 T cells cultured

with IL12/B7-1 decorated TMV without VIPhyb and idelalisib

(Figure 1A). Notably, this effect was not observed in CD4 T cells,

which may attribute to the lack of VPAC1 expression in CD4 subset

(Passang unpublished). The tumor-antigen-stimulated T cells

expanded with VIPhyb and idelalisib were more effective in

controlling the growth of patient-derived colon cancer xenografts

(PDX) following infusion into tumor-bearing immunodeficient

NSG mice than T cells expanded with TMV but without the

addition of VIPhyb + idelalisib, or T cells expanded with neither

TMV nor VIPhyb plus idelalisib (Figure 1A).

Duvelisib and ANT308
Later we investigated the synergy effect of PI3Kg/d inhibitor

duvelisib and leading VIPR-ANT peptide ANT308. The actively

proliferating T cells (Ki67+CD3+), CD4+, and CD8+ T-cell subsets

synergistically expanded in vitro with the combinatorial use of

duvelisib and ANT308 (Figure 1B). We also found that ANT308 as

a single agent, could promote a less senescent T-cell phenotype

(CD27+CD28+), decrease exhausted T cells (PD1+Lag3+Tim3+) and

reduce the expression of PD-1, LAG3, and TIM3. Adding duvelisib

to T cells cultured with ANT308 or ANT195 synergistically

enhanced the expansion of central memory T cells. The

percentage of T cells co-expressing CD27 and CD28 increased

from 2.59% to 7.16% with single-agent ANT308 (3 mM) and

12.5% with single-agent duvelisib (1 µM). The percentage of

CD27+CD28+ T cells further increased to 40.83% with the

combination of ANT308 and duvelisib (Figure 1C). Similarly, the

percentage of T ce l l s wi th an exhausted phenotype

(PD1+Lag3+Tim3+) decreased from 37.8% in control cultures with

neither ANT308 nor duvelisib, to 22.53% with only ANT308, to

12.56% with single-agent Duvelisib. Adding both drugs together

further decreased the frequency of exhausted T cells to 5.93%

(Figure 1D). Comparable synergistic effects of adding the VIP-

receptor antagonist ANT195 to duvelisib effect were observed

(Figures S2-3).
Concluding remarks

The field of cell-based immunotherapy is growing

exponentially. However, efforts are still needed to improve the

clinical response rate. Recent studies have focused on developing

strategies to optimize efficiency in manufacturing T-cells for ACT

therapy and the efficacy of T cells in vivo. We have reviewed current

strategies to enhance T-cell expansion, persistence, and

functionality during ex vivo manufacturing. Moreover, we further

discussed the synergistic benefits of approaches that target multiple

signaling pathways. Besides the conventional small-molecule drugs,

novel VIPR-ANT peptides are promising immunotherapeutic

candidates. Future studies will define the immunoregulatory role

of VIP in ACT and its feasibility in clinical application.
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